Clustering decoys produced by ab initio protein structure prediction systems

Shuai Cheng Li
City University of Hong Kong

RosettaCon 2012

July 29th - August 1st

Protein structure prediction

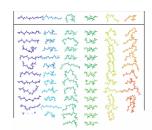
- The prediction of the three-dimensional structure of a protein from its amino acid sequence (primary structure)
 - Secondary structure prediction
 - Tertiary structure prediction
 - Quaternary structure prediction

Ab initio protein structure prediction

- Reconstruct the tertiary structure "from scratch"
- Typically modeled as a problem of finding the most stable (in terms of energy) structure that an amino acid sequence folds into
 - Enormous number of structures to search
 - Adding biases into the search
 - Threading / Assembly / Refinement

Threading / Assembly / Refinement

- Proposed in ROSETTA (Simons et al. 1999)
 - Used by many other methods
 - I-TASSER (Wu, Skolnick and Zhang, 2007)
 - Fragment-HMM (Li et al. 2008)
 - etc.
- Threading
 - Scans the amino acid sequence of an unknown structure against a database of solved structures
- Assembly / Refinement:
 - Depends on the method



Finding representative decoys

Candidate structures called decoys are generated Decoys need to be clustered before the representative ones are determined

Typically,
 thousands to tens
 of thousands such decoys are generated

Finding representative decoys

Candidate structures called decoys are generated Decoys need to be clustered before the representative ones are determined

■ Typically,

thousands to tens

of thousands such decoys are generated

Clustering in ROSETTA

- In most systems (including ROSETTA, I-TASSER and Fragment-HMM), clustering is done as follows
 - Starting with the set of generated decoys, a threshold d is first decided.
 - □ From the set, the decoy with the most neighboring decoys within **RMSD** *d* from it is found, and is reported as the highest ranking decoy. (Ties are broken arbitrarily.)
 - This decoy and all of its neighbors (the first cluster) are then removed from the set, after which the decoy with the most neighbors within **RMSD** *d* is again found.
 - This decoy is reported as the second highest ranking decoy, and together with all its neighbors (the second cluster) are removed from the set.
 - Similarly the third highest ranking decoy is then found, and so

Root Mean Squared Deviation (RMSD)

Given two structures of length n,

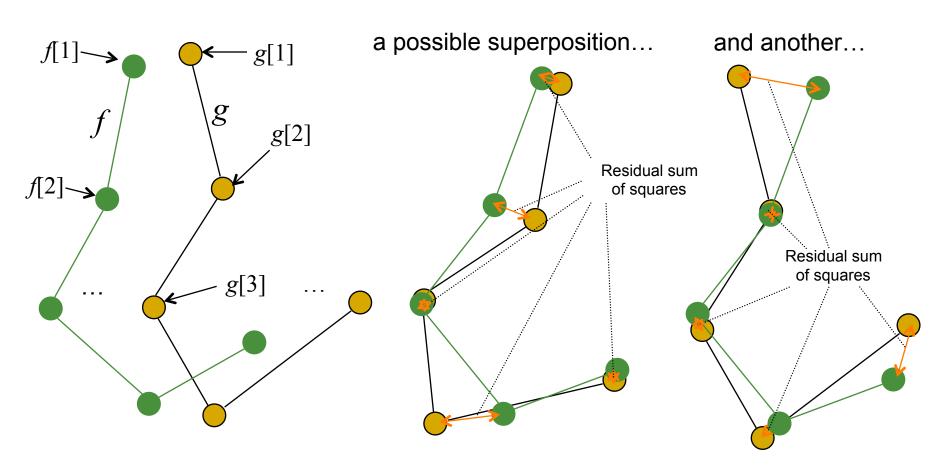
$$\square S_1 = (S_{1,1}, S_{1,2}, \dots S_{1,n})$$

$$\square S_2 = (S_{2,1}, S_{2,2}, \dots S_{2,n})$$

The RMSD between S_1 and S_2 is computed as

$$RMSD(S_1, S_2) = \min_{R, T} \sqrt{\frac{\sum_{i=1}^{n} ||RS_{1,i} - S_{2,i} - T||^2}{n}}$$

Root Mean Squared Deviation (RMSD)



Aim is to find the superposition (R, T) $\frac{1}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} ||RS_{1,i} - S_{2,i} - T||^2}$ which minimizes

$$\frac{1}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} \left\| RS_{1,i} - S_{2,i} - T \right\|^{2}}$$

Implementations of ROSETTA's clustering

- ROSETTA (Simon et al., 1999)
 - Uses a slow but accurate method for determining threshold d
- SPICKER (Zhang and Skolnick, 2003)
 - Straight-forward re-implementation of ROSETTA's clustering method in FORTRAN
 - $lue{}$ No attempt at accurately determining threshold d
 - No dynamic memory allocation clusters at most 10,000 decoys
- SCUD (Li and Zhou, 2005)
 - Faster computation by using an approximation of RMSD instead of actual RMSD
- Calibur (Li and Ng, 2010)
 - Uses heuristics to speed-up clustering with RMSD

Find decoys with the most neighbors

Given a threshold for similarity t:

```
For each decoy d, N[d] \leftarrow 0, \ (N[d] = \text{number of neighbors of } d) For each decoy d, If \ \text{RMSD}(d, d') \leq t; \ \text{then } N[d] \leftarrow N[d] + 1. Output the decoys with the largest N[d].
```

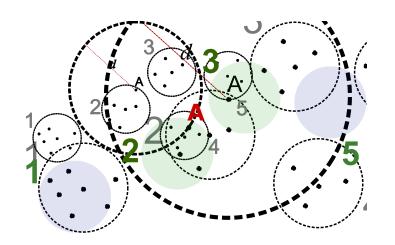
- Runtime is $O(n^2)$, n = number of decoys
- Two problems:
 - 1. How to determine the threshold *t*?
 - 2. Expensive RMSD computation slow for large $n \ge 10000$

Calibur: Speeding-up exhaustive method

Group decoys into proximity groups

Example: Groups 1-5

- When finding decoys similar to decoy A:
 - 1) All decoys in **Groups 2 and 3** are within RMSD d
 - 2) All decoys in **Groups 1 and 5** are above RMSD d



 Use efficiently computable lowerbounds and upperbounds of RMSD to skip RMSD computation whenever possible, i.e.

Lowerbound_of_RMSD(
$$d, d'$$
) $\geq d \Rightarrow \text{RMSD}(d, d') \geq d$
Upperbound_of_RMSD(d, d') $\leq d \Rightarrow \text{RMSD}(d, d') \leq d$

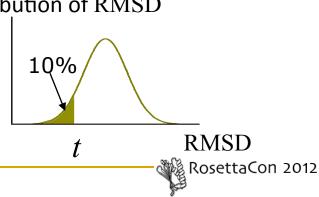
Calibur: Threshold determination

- Threshold determination used in ROSETTA and I-TASSER
 - Based on largest number of neighboring decoys
 - Example: Find t such that the largest N[d] is of size about $10{\sim}20\%$ of the total number of decoys
 - Problem: difficult to compute
 - Calibur's threshold finding principle

Consider two decoys as significantly similar iff their RMSD is relatively small among all pairwise RMSDs

 \Rightarrow Find t such that only ~10% percent of all pairwise RMSDs are below t

- Observation: pairwise RMSDs follow normal distribution
- t can be estimated efficiently using sampling distribution



Calibur: Filtering outliers

- Method: Discard decoys with low similarity to other decoys
- Difficulty: To retain all high ranking decoys, and the decoys which are within distance d from them ("good" decoys)
- Assume: Every high ranking decoy is within distance d from 10% of all decoys

Calibur's filtering of outliers

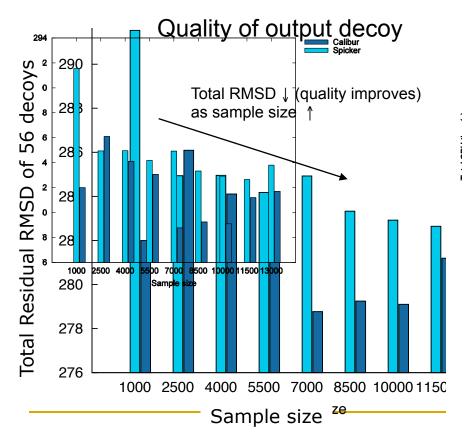
Randomly sample *x* decoys.

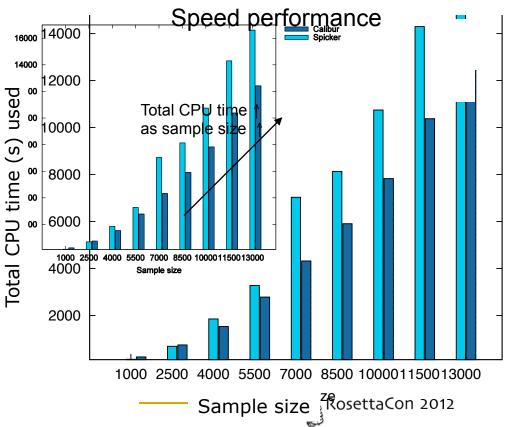
For each decoy y, discard y if it is not within 2d from any of the sampled decoys.

- Analysis: Probability that a "good" decoy is within distance 2d from a random decoy = 0.1
 - ⇒ Probability that a "good" decoy is within distance 2d from at least one of x decoys = $1 0.9^x$ (≥ 0.99999 for x=100)
 - ⇒ Highly unlikely to discard "good" decoys

Calibur: Results

- Compared with SPICKER (clustering tool used in I-TASSER)
- 56 proteins + 56 sets of decoys, each set of size >12000
- Experiment on samples of sizes 1000, 2500, 4000, ..., 13000
 - SPICKER Calibur





How about other clustering methods?

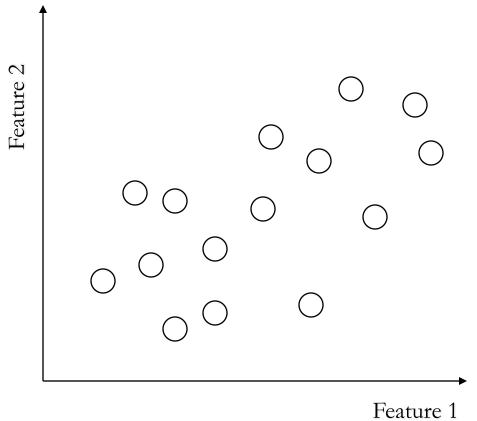
For instance, k-means clustering

- k-means clustering is a heuristic method which aims to solve the following problem:
 - Given n decoys $S_1, S_2, ..., S_n, k$ -means clustering aims to cluster the decoys into k sets, $\mathbf{A} = \{A_1, A_2, ..., A_k\}$, to minimize

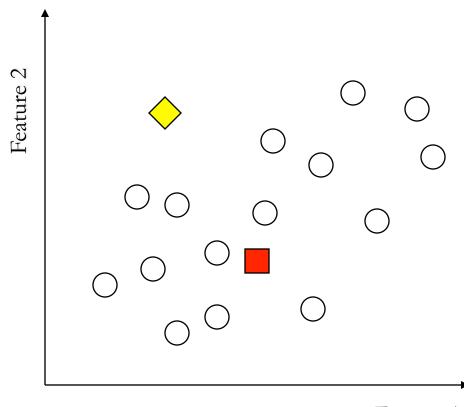
$$\underset{A}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{S_{j} \in A_{i}} \left\| S_{j} - \mu_{i} \right\|^{2}$$

where μ_i is the centroid of the set of decoys A_i

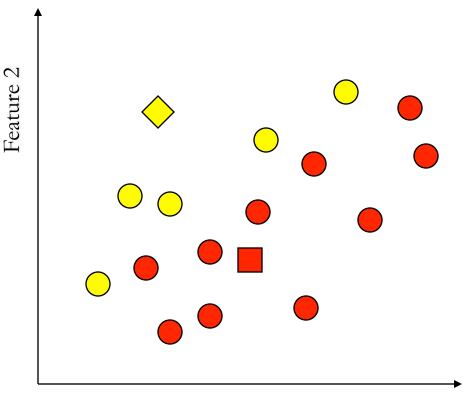
- Problem: cluster examples into k groups
- Example: Cluster the given examples into 2 groups



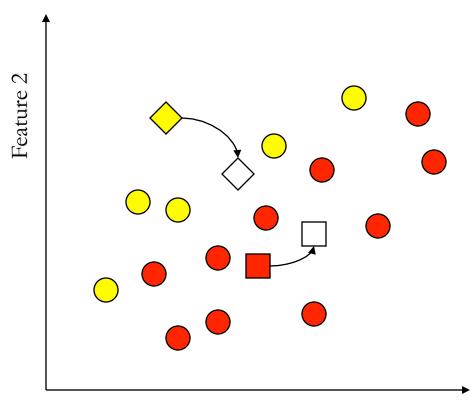
Randomly initialize cluster centers



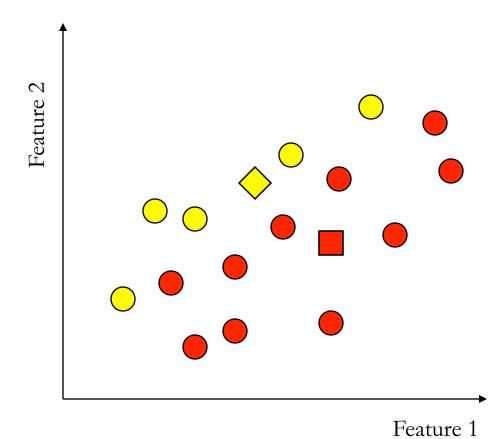
- Classify samples according to the nearest cluster center
- Different distance measures can be used, e.g.
 - Euclidean distance
 - Manhattan distance



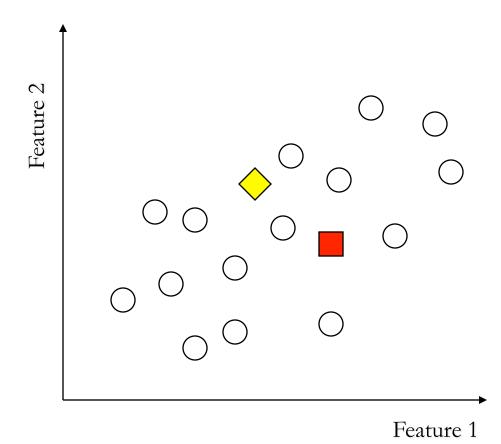
Re-compute cluster centers



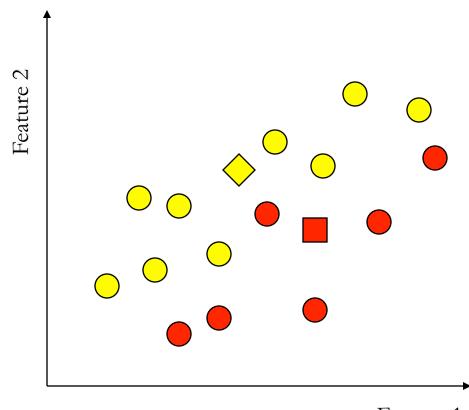
Cluster centers re-computed



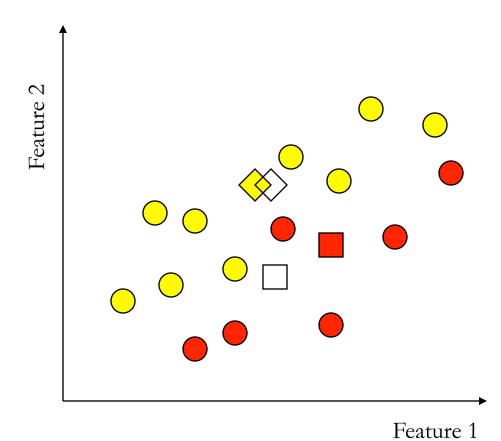
Reset clusters

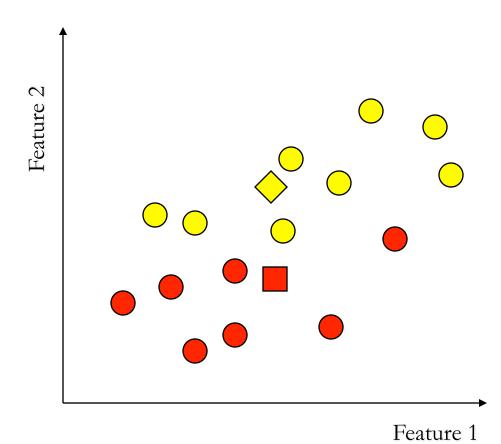


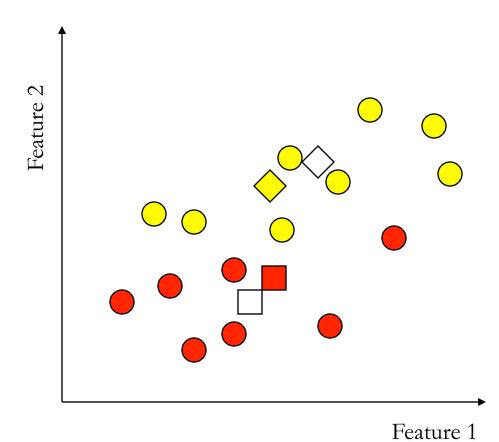
 Re-classify samples according to the nearest cluster center

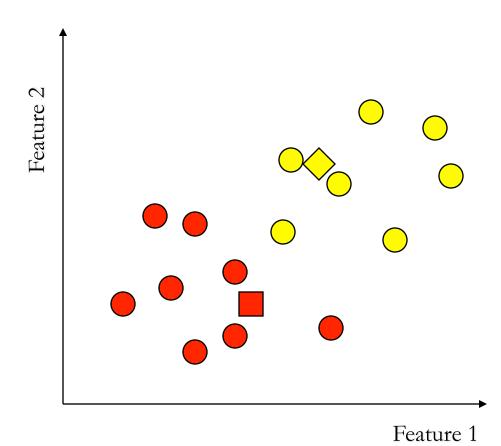


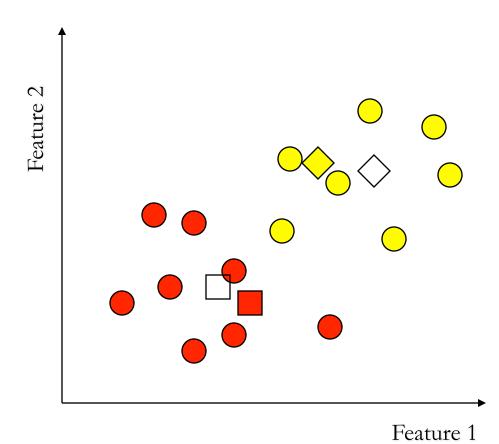
Re-compute cluster centers



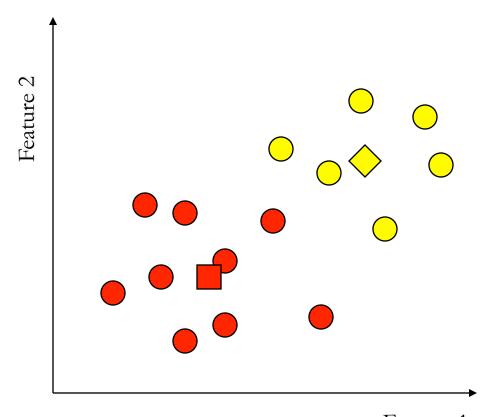








Loop until no changes in cluster centers



Results using k-means clustering

- Pleiades (Harder et al., 2011)
 - □ *k*-means Clustering
 - Uses an approximation (Gaussian integral) of RMSD instead of computing the actual RMSD
- Results obtained by Pleiades
 - \blacksquare k-means performed better than ROSETTA's clustering
 - Using RMSD results in slower computation, but resulted in better final decoys than when using Gaussian integral

The Onion method

- Onion (Li et al., 2011)
 - Similar to the aim of k-means, the objective is: Given n decoys S_1, S_2, \ldots, S_n , to cluster the decoys into k sets, $\mathbf{A} = \{A_1, A_2, \ldots, A_k\}$, to minimize

$$\underset{A}{\operatorname{arg\,min}} \sum_{i=1}^{\kappa} \sum_{S_j \in A_i} \operatorname{RMSD}(S_j, \mu_i)$$

where μ_i is the centroid of the set of decoys A_i

Recall that the aim of k-means was to minimize $\underset{A}{\operatorname{arg\,min}} \sum_{i=1}^k \sum_{S_j \in A_i} \left\| S_j - \mu_i \right\|^2$ RosettaCon 2

Onion: The Algorithm

Input: Protein structures P_1, P_2, \dots, P_n , and approximation factors η, ε .

Output: Representative structure O of approximation by η , ε

```
For i \leftarrow 1...k do
```

Randomly pick η structures P_{i_1} , P_{i_2} , ..., P_{i_n}

Superimpose P_{i_1} , P_{i_2} , ..., P_{i_η} to P_{i_1}

Create the rotation space for each structure P_{i_2} , ..., P_{i_η}

For every η -1 rotations R_2 , ..., R_η from the respective rotation space ${\bf do}$

Let
$$O = (P_1 + R_2P_2 + ... + R_\eta P_\eta)/\eta$$
 (That is, the average structure)

For each input structure P_1, P_2, \ldots, P_n , find the optimal rigid transformation R_i ' that minimizes $\| \mathbf{O} - R_i P_i \|^2$

Compute
$$c(O) = \sum_{1 \le i \le n} \| O - R_i P_i \|$$

Output O (and the corresponding R_i) which minimizes c(O)

Onion: Results vs SPICKER/Calibur

- Clustering quality
 - Decoys obtained are comparable, if not better than SPICKER
- Speed

Faster than Calibur			CPU Time	
	Target	Size	Calibur	Onion
	1ah9_	27498	1125.38	166.82

Target	Size	Calibur	Onion
1ah9_	27498	1125.38	166.82
1aoy_	32000	3144.66	194.16
1cy5A	32000	3585.62	189.07
1gpt_	32000	1384.36	171.76
1tfi_	32000	2111.49	303.12
1thx_	32000	3939.86	268.47
2a0b_	32000	3804.93	53.19

Comparing Onion to Pleiades

- Both Onion and Pleiades are based on minimizing the "sum-of-square error"
 - No experimental results comparing both methods yet (research separately performed around the same time)
- Theoretically, Onion is better than Pleiades in the sense that
 - ullet Pleiades uses k-means, which is a heuristic method in minimizing the sum-of-square error
 - Onion uses a polynomial time approximation scheme
 - That is, Onion offers guarantee in its
 - Runtime
 - Deviation from the optimal solution

Where do we go from here?

- An equidistant line from both centers can be drawn
- For more than 2 clusters, imagine a Voronoi diagram
- Such a clustering is based on the proximity to the centroids
- It may be possible to consider information beyond just "proximity"

Feature 2

Feature 1

Thanks

That's all, folks!